

Sandia National Labs' Security Risk Assessment Methodologies

Systems Engineering Approach to Security

How Much Is Enough?

Design and Evaluation Process Outline (DEPO) for Physical Protection Systems (PPS)

Final PPS Evaluate Define PPS Design PPS Design **PPS** Requirements **Physical Protection Systems Evaluation of PPS Process of PPS** Redesign **Design and PPS Evaluation** Scenario and **Path Analysis** Detection Response Delay **Facility** Single Path Characterization **Intrusion Detection** Access Response **Analysis Force Systems** Delay Single Path **Target Computer Model** Identification Alarm Assessment **Multi-Path Analysis Multi-Path Computer Alarm Communication Threat Definition** & Display Model **Insider Analysis Entry Control** Regulations and Risk **Neutralization Analysis** Contraband Management Detection **Transportation Security System Effectiveness Gathering Performance Data Evaluation Process**

Sandia National Laboratories Vulnerability & Risk Assessment Methodologies

- RAM-D (Dams)
 - Interagency Forum for Infrastructure Protection
- RAM-T (Electrical Utility Transmission Systems)
 - Interagency Forum for Infrastructure Protection
- RAM-W (Municipal water systems)
 - AwwaRF, EPA
- RAM-C (Communities)
 - Partnerships w/communities and law enforcement agencies
- RAM-CF (Chemical facilities)
 - DOJ, EPA, many chemical industry stakeholders
- RAM-P (Prisons)
 - DOJ, State Department of Corrections
- RAM-E (Pipelines, Electric Power Generation; in development)
 - DOE, Gas Associations, Oil/Gas Industry, Power Utilities
- Other critical infrastructures
 - Interdependencies (energy, transportation, comm...)
- DOE, DoD and Other applications
 Facility/installation vulnerability assessments, SEAs

Vulnerability Analysis Tools

- A vulnerability analysis is a systematic analysis involving expertise in all parts of a physical protection system (analogous to a probabilistic risk analysis in reactor safety)
- Analysis tools tend to fall in two groups

Adversary Path analysis

Force-on-Force analysis

Components of Risk

Generic Risk Assessment Methodology Process

Note: Each critical infrastructure (CI) follows a RAM process developed specifically for that CI.

Risk Assessment Methodology for Dams (RAM-D)

Risk Assessment Methodology for Transmission (RAM-T)

Application of
IFIP Security Methodology for
High Voltage
Electrical Power Transmission
to BPA Facilities

Conducted by the Interagency Forum for Infrastructure Protection (IFIP)

Prepared and Delivered by Sandia National Laboratories

Rudy Matalucci, Project Manager 505-844-8804

October 2000

Risk Assessment Methodology for Water Utilities (RAM-W)

- EPA
- AwwaRF
- American Water Works Association
- Local Water Utilities

Risk Assessment Methodology for Chemical/Petrochemical Facilities (RAM-CF)

Risk assessment methodology for assessing the security of chemical facilities. Funded by NIJ/USDOJ and EPA.

Security Risk Assessments and Security Design Reviews for Correctional Facilities (RAM-P)

Risk Assessment
Methodology for Communities
(RAM-C)

Planning

- Define Security Goals
 - Considering what is important
 - Protect lives
 - Protect property
 - Prevent loss of services
 - The financial resources available
 - The acceptability of the potential consequences of an adversary action

Facility Characterization and Target Identification

Specify Undesired Events

Identify Targets

Determine Target Locations

Consequences Assessment

- Determine consequence parameters
 - e.g., loss of life, economic impact, loss of mission
 - Develop measurement criteria values
- Determine severity for loss of asset/target
 - Prioritize targets

Threat Assessment

- Adversary types and capabilities
- Consider adversary scenarios
- Identify information sources
- Develop defined threat(s)
- Likelihood of attack process

Non-State Actors

Local extremist

System Effectiveness

- A measure of how effectively the Physical Protection System (detection, delay, response) prevents an adversary from successfully causing an undesired event
- Also considers how operational, safety and emergency response measures prevent an undesired event
- Considers capabilities of the defined threat
- Review polices and procedures

Adversary Task Time vs. Physical Protection System

Adversary Sequence Diagram (ASD)

- Graphical model used to help evaluate effectiveness of a facility PPS
- Represents:
 - Paths that adversaries can follow to accomplish sabotage or theft
 - PPS elements along paths
- Used to determine most vulnerable path for specific PPS and threat

Risk Analysis and Reduction

- Determine relative risk
- Consider constraints
 - Legal, operational, budget, resources, etc.
- Accept risk or change:
 - Likelihood of attack, system effectiveness, and/or consequences
- Community Leaders and Facility Owners' Decisions
 - Acceptable risk?
 - What to budget?
 - How to balance risk?

Summary

- Long heritage of security analysis, design, implementation and testing
- Applications from hardened targets to critical infrastructure
- Systematic approach begins with requirements and ends with design that achieves these requirements
- SNL helps agencies understand their security issues and their solution options.